Military Technology and Sample Selection Bias

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sample Selection Bias Correction Theory

This paper presents a theoretical analysis of sample selection bias correction. The sample bias correction technique commonly used in machine learning consists of reweighting the cost of an error on each training point of a biased sample to more closely reflect the unbiased distribution. This relies on weights derived by various estimation techniques based on finite samples. We analyze the effe...

متن کامل

Models for Sample Selection Bias

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...

متن کامل

Credit scoring and the sample selection bias

For creating or adjusting credit scoring rules, usually only the accepted applicant’s data and default information are available. The missing information for the rejected applicants and the sorting mechanism of the preceding scoring can lead to a sample selection bias. In other words, mostly inferior classification results are achieved if these new rules are applied to the whole population of a...

متن کامل

Detecting and Statistically Correcting Sample Selection Bias

Researchers seldom realize 100% participation for any research study. If participants and non-participants are systematically different, substantive results may be biased in unknown ways, and external or internal validity may be compromised. Typically social work reGary Cuddeback, MSW, MPH, is Research Associate, Cecil G. Sheps Center for Health Services Research, University of North Carolina a...

متن کامل

Robust Classification Under Sample Selection Bias

In many important machine learning applications, the source distribution used to estimate a probabilistic classifier differs from the target distribution on which the classifier will be used to make predictions. Due to its asymptotic properties, sample reweighted empirical loss minimization is a commonly employed technique to deal with this difference. However, given finite amounts of labeled s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Social Science History

سال: 2020

ISSN: 0145-5532,1527-8034

DOI: 10.1017/ssh.2020.16